
Research Article
Accelerating Smith-Waterman Alignment for
Protein Database Search Using Frequency Distance Filtration
Scheme Based on CPU-GPU Collaborative System

Yu Liu,1 Yang Hong,1 Chun-Yuan Lin,2 and Che-Lun Hung3

1School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
2Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
3Department of Computer Science and Communication Engineering, Providence University, Taichung 43301, Taiwan

Correspondence should be addressed to Che-Lun Hung; clhung@pu.edu.tw

Received 18 March 2015; Revised 18 August 2015; Accepted 26 August 2015

Academic Editor: Hai Jiang

Copyright © 2015 Yu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics.
Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDAmodel to
enhance the performance of SW computations. However, these works mainly focused on the protein database search by using
the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in
this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the
intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a
procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments.
The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without
and with FDFS, respectively.

1. Introduction

In bioinformatics, the sequence alignment has become one
of the most important issues. When the biologists get
an unknown sequence, in general they would compare
this unknown sequence (denoted as query sequence) with
the known database of sequences (denoted as database
sequences) to find the similarity scores and then identify
the evolutionary relationships among them. Needleman and
Wunsch [1] proposed a dynamic programming method
(abbreviated to NW algorithm) to solve the global align-
ment problem between two sequences in 1970. The Smith-
Waterman (abbreviated to SW) algorithm, which was pro-
posed by Smith and Waterman [2] in 1981, is designed to
find the optimal local alignment, and it is enhanced by Gotoh
[3] in 1982. Although Hirschberg’s algorithm [4] can be used
for these algorithms above to reduce the memory space
requirement, the computing time increases by a factor of two.
When the lengths of two sequences are𝑚 and 𝑛, respectively,

the time complexities of both NW and SW algorithms are
𝑂(𝑚𝑛), respectively, and their space complexities by adapting
Hirschberg’s algorithm can be both reduced from 𝑂(𝑚𝑛) to
𝑂(𝑚), where 𝑚 is assumed to be larger than 𝑛. Though the
NW and SW algorithms guarantee the maximal sensitivity
for the alignment, the cost is still expensive, especially for the
computation time.

Several fast heuristic methods such as FASTA [5] and
BLAST [6, 7] have been devised to reduce the computation
time at the expense of sensitivity. However, the exponential
increase in the number of known sequences has increased
the search time for querying against a database. Recently
many core architectures, such as FPGA [8–10], Cell/Bes [11–
13], andGraphics ProcessingUnits (abbreviated toGPUs) [14,
15], have gradually become more popular in bioinformatics.
These new architectures make it possible to enhance the
performance of sequence alignments by using the parallel
computing technologies. The use of GPUs has gradually

Hindawi Publishing Corporation
International Journal of Genomics
Volume 2015, Article ID 761063, 12 pages
http://dx.doi.org/10.1155/2015/761063

http://dx.doi.org/10.1155/2015/761063


2 International Journal of Genomics

mainstreamed in the high-speed computing field.The poten-
tial advantage ofGPU is its thousands of cores, with their total
computing power exceeding the architecture with few CPUs.
Also NVIDIA released the compute unified device architec-
ture (abbreviated to CUDA)model to allow the programmers
to use the commonly used programming languages, such as
C/C++, to develop the applications. Thus many efforts have
been made to accelerate the SW computations by CUDA on
GPU.

In 2008, Manavski and Valle [16] presented the first SW
algorithm by CUDA for the protein database search on GPU.
Theproposed algorithmwas enhanced by theGSWalgorithm
proposed by Striemer and Akoglu [17] in 2009. Ligowski
and Rudnicki [18] also presented another SW algorithm for
the protein database search on GPU in 2009. Liu et al.
proposed CUDASW++1.0 [19] and CUDASW++2.0 [20] for
protein database search in 2009 and 2010, respectively. In
CUDASW++1.0, they defined the intertask parallelization
(abbreviated to ITE) and intratask parallelization (abbrevi-
ated to ITR) techniques for the relationships of task-thread
and task-thread block on GPU, respectively. In general, the
performance of the ITE technique is better than that of the
ITR technique; however the ITE technique requires more
memory space and then it is suitable for short sequences.
Khajeh-Saeed et al. [21] proposed a CUDA-based SW algo-
rithm (abbreviated to CUDA-SSCA#1) by using the ITR
technique and multiple GPUs in 2010. In 2011, Hasan et al.
[22] proposed a GPU-based SW algorithm (abbreviated to
HKA algorithm) for the protein database search by using new
sequence database organization and several optimizations to
reduce the number of memory accesses. Hains et al. [23]
developed new ITE and ITR kernels of SW algorithm for the
protein database search in 2011. Sandes and deMelo proposed
CUDAling1.0 [24] and CUDAling2.0 [25] for comparing
two huge genomic sequences on GPU in 2010 and 2011,
respectively. Liu et al. [26] presented CUDASW++3.0 in
2013 for the protein database search by coupling the CPU
and GPU SIMD instructions and doing the CPU and GPU
computations concurrently.

With the development of next-generation sequencing
(NGS) techniques, the NGS machines can generate more
than 1000 million nucleotide short reads (DNA, mRNA, and
small-RNA) of lengths around 30∼50 bps or more in a single
run. For several NGS applications, such as metagenomics,
these short reads will be assembled into possible contigs
with lengths of tens to hundreds. These contigs are then
used to match several well-known databases, such as NCBI-
nt database, in order to classify or filter out these contigs.
For coding DNA or mRNA short reads, they also can be
translated to proteins for the proteomic research or be used
for the analysis procedure of transcriptome. Now, several
databases have more than hundreds of thousands protein (or
nucleotide) sequences with lengths of tens to hundreds (or
hundreds to tens of thousands). However, the previous works
mentioned above are not suitable for the protein database
searchwith a lot of database sequences.There are two reasons.
One is that most of these works are suitable for short query
and database sequences by using the ITE technique.Theother
is that these works all do the SW computations one by one

(seen as the brute force search), and the computation timewill
be large for comparing a query sequencewith a lot of database
sequences under the limited hardware resources.Therefore, it
is important to provide new concepts and procedures for the
protein database search problem.

There is a possible method to compare a query sequence
with a lot of database sequences, called CUDA-SWf proposed
by Lee et al. [27] in 2013. CUDA-SWf used the frequency
distance filtration scheme (abbreviated to FDFS) [28] in
the run-time to filter out the unnecessary alignments, and
then the computation time by CUDA-SWf is improved up
to 41%. However, CUDA-SWf is also designed by using the
ITE technique. The FDFS in CUDA-SWf is to calculate the
frequency vectors of query and database sequences on GPU
at first; then it calculates the frequency distance for each pair
of query and database sequences, and after that the database
sequences that need to be compared (denoted as selected
database sequences) should be transferred from GPU to
CPU. Finally, these selected database sequences are sorted
according to their lengths and then retransferred from CPU
to GPU in order to do the SW computations. Hence, the
computation time by CUDA-SWf may be large for a lot of
database sequences.

In this paper, we will propose an efficient SW alignment
method, called CUDA-SWfr, for the protein database search
by using the ITR technique based on a CPU-GPU collabo-
rative system. In order to avoid the unnecessary alignments,
FDFS is also applied to CUDA-SWfr to enhance the com-
putation performance. For most of bioapplications, the used
database can be predownloaded and preprocessed according
to the application requirements. Therefore, the frequency
vectors of database sequences can be precalculated and then
stored in the database. Before doing the SW computations on
GPU, FDFS is executed on CPU by calculating the frequency
distances for each pair of frequency vectors from a query
and database sequences. After that, the query and selected
database sequences are transferred from CPU to GPU. The
computation time of this procedure can be overlapped with
that of SW computations. The experimental results indicate
that CUDA-SWfr runs 9.6 times and 96 times faster than the
CPU-based SWmethodwithout andwith FDFS, respectively.
These results indicated that CUDA-SWfr is suitable for the
protein database search with a lot of database sequences.

The rest of this paper is organized as follows. Section 2
briefly describes the background knowledge of CUDA-
SWfr, including the SW algorithm, the CUDA programming
model, the frequency vector and frequency distance, and
the related works of SW algorithm by CUDA on GPU.
Section 3 then introduces CUDA-SWfr consisting of the
implementations of FDFS on CPU and the SW computations
on GPU. Section 4 gives the experimental results to evaluate
CUDA-SWfr without and with FDFS.

2. Background Knowledge

2.1. The SW Algorithm. The SW algorithm is designed to
identify the optimal local alignment between two sequences
(query and database sequences). The SW computation needs
a substitution matrix, such as a series of BLOSUM [28] or



International Journal of Genomics 3

A

Query sequence

0 A G CD P IF

0

C

F

D

G

T

A

D
at

ab
as

e s
eq

ue
nc

e

Figure 1: Dependency of calculating an alignment matrix𝐻(𝑖, 𝑗).

PAM [29] matrices, and a gap-penalty function, such as
the constant gap penalty or the affine gap penalty. The SW
algorithm adopted in CUDA-SWfr is the same as that used
in CUDA-SSCA#1 [21] with the affine gap penalty. Given two
sequences 𝑆

1
and 𝑆

2
with lengths 𝑙

1
and 𝑙
2
, respectively, the

SW algorithm computes the similarity score in an alignment
matrix𝐻(𝑖, 𝑗)of these two sequences ending at positions 𝑖 and
𝑗 of sequences 𝑆

1
and 𝑆
2
, respectively. The alignment matrix

𝐻(𝑖, 𝑗) is computed according to

𝐻
𝑖,𝑗
= Max

{
{
{
{

{
{
{
{

{

Max (𝐻
𝑖−1,𝑗−1

+ 𝑆
𝑖𝑗
, 0)

Max
0<𝑘<𝑖

(𝐻
𝑖−𝑘,𝑗

− (𝐺
𝑠
+ 𝑘𝐺
𝑒
))

Max
0<𝑘<𝑗

(𝐻
𝑖,𝑗−𝑘

− (𝐺
𝑠
+ 𝑘𝐺
𝑒
)) ,

(1)

where 1 ≤ 𝑖 ≤ 𝑙
1
, 1 ≤ 𝑗 ≤ 𝑙

2
, and 𝑆

𝑖𝑗
is the score in a

substitution matrix, which is extracted according to a residue
at position 𝑖 in sequence 𝑆

1
and another residue at position 𝑗

in sequence 𝑆
2
. 𝐺
𝑠
is the gap opening penalty, 𝐺

𝑒
is the gap

extension penalty, and 𝑘 is the number of the extended gaps.
Themaximumvalue of alignmentmatrix𝐻(𝑖, 𝑗) indicates

the similarity score between two sequences. The dependency
of calculating an alignment matrix 𝐻(𝑖, 𝑗) is shown in
Figure 1. Asmentioned in the literature [21], formula (1) is the
native concept of the SW algorithm. In order to improve the
SW computation, the SW algorithm is modified as formula
(2) according to the literature [3]. Formula (2) ismore suitable
for the parallel computing and the details of SW algorithm
can be found in the literature [21]:

𝐸
𝑖,𝑗
= Max (𝐸

𝑖,𝑗−1
, 𝐻
𝑖,𝑗−1

− 𝐺
𝑠
) − 𝐺
𝑒
,

𝐹
𝑖,𝑗
= Max (𝐹

𝑖−1,𝑗
, 𝐻
𝑖−1,𝑗

− 𝐺
𝑠
) − 𝐺
𝑒
,

𝐻
𝑖,𝑗
= Max (𝐻

𝑖−1,𝑗−1
+ 𝑆
𝑖𝑗
, 𝐸
𝑖,𝑗
, 𝐹
𝑖,𝑗
, 0) .

(2)

2.2. CUDA Programming Model. CUDA is an extension of
commonly used programming languages, such as C/C++,

in which users can write scalable multithreading programs
for various applications. In general, the CUDA program is
implemented in two parts: Host and Device. The Host part is
executed by CPU, and the Device part is executed by GPU.
The function executed on the Device part is called a Kernel.
The Kernel can be invoked as a set of concurrently executing
threads (abbreviated to TDs). These TDs are grouped into a
hierarchical organization which can be combined into thread
blocks (abbreviated to TBs) and grids (abbreviated to GDs).
A GD is a set of independent TBs, and a TB contains many
TDs. The size of GD is the number of TBs per GD, and the
size of TB is the number of TDs per TB.

The TDs in a TB can communicate and synchronize with
each other. TDs within a TB can communicate through a per-
TB shared memory (abbreviated to sM), whereas TDs in the
different TBs fail to communicate or synchronize directly.
Besides sM, five memory types are per-TD private local
memory (abbreviated to LM), global memory (abbreviated to
GM) for data shared by all TBs, texture memory (abbreviated
to TM), constant memory (abbreviated to CM), and registers
(abbreviated to RG).Of thesememory types, CMandTMcan
be regarded as fast read-only caches; the fastest memories are
the register and sM. The GM, LM, TM, and CM are located
on the GPU’s memory. Besides sM accessed by a single TB
and RG only accessed by a single TD, the other memory
types can be used by all TDs. The caches of TM and CM are
limited to 8KB per streaming multiprocessor (abbreviated to
SM). In the Kepler architecture, SM is also called SMX. The
optimum access strategy for CM is all TDs reading the same
memory address. The cache of TM is designed for TDs in
order to improve the efficiency of memory access. The Fermi
and Kepler architectures have real configurable L1 per SM
and unified L2 caches among SMs. Hence, L2 caches can be
accessed by GM and each SM can use the L1 caches and sM.

The basic processing unit in NVIDIA’s GPU architecture
is called the streaming processor (abbreviated to SP). In the
Fermi and Kepler architectures, the basic processing unit is
called CUDA cores. Many SPs perform the computations
on GPU. Several SPs can be integrated into a SM according
to various architectures, such as 32 and 192 SPs per SM for
the Fermi and Kepler architectures, respectively. While the
program runs the Kernel, the Device schedules TBs for the
execution on the SM.The Single Instruction MultipleThread
(abbreviated to SIMT) scheme refers to TDs running on the
SM in a small group of 32, called a warp (abbreviated toWP).
The WP scheduler simultaneously schedules and dispatches
instructions.

2.3. Frequency Vector and Frequency Distance. The frequency
vector and frequency distance are proposed by Kahveci et
al. [30] in 2004, and they are used to the whole genome
alignment problem. In the literature [31], the frequency
distance is also used to remove the sequences which are
dissimilar between the query and subject sequences before
performing the sequence alignment. In 2013, Lee et al.
[27] used the frequency vector and frequency distance to
remove the unnecessary SW alignments between the query
and database sequences. Assuming that a query or database
sequence 𝑠 is composed of 𝑛 kinds of nucleotides/amino



4 International Journal of Genomics

acids (denoted as the alphabet set), the frequency vector
(abbreviated to FV) of 𝑠 is defined as follows:

FV (𝑠) = 𝑓
𝑠
= [𝛼
1
, 𝛼
2
, 𝛼
3
, . . . , 𝛼

𝑛
] , (3)

where 𝛼
𝑛
represents the number of 𝑛th alphabets appearing

in the sequence 𝑠. Assume that there are two DNA sequences
𝑢 and V; the frequency distance (abbreviated to FD) of these
two sequences is defined as follows:

FD (𝑓
𝑢
, 𝑓V) =

󵄨
󵄨
󵄨
󵄨
𝑓
𝑢
− 𝑓V

󵄨
󵄨
󵄨
󵄨

= (
󵄨
󵄨
󵄨
󵄨
𝐴
𝑢
− 𝐴V

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑇
𝑢
− 𝑇V

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐺
𝑢
− 𝐺V

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐶
𝑢
− 𝐶V

󵄨
󵄨
󵄨
󵄨
) .

(4)

The FD is calculated from FVs of sequences 𝑢 and V,
which is the sum of differences for FVs of the alphabet set.
For the biological sequences, the edit distance (abbreviated
to ED) is a commonly used measurement to represent the
difference between two sequences. In other words, a low edit
distance means a high similarity score. The relation between
FD and ED for sequences 𝑢 and V is listed as follows:

FD (𝑓
𝑢
, 𝑓V) ≤ ED (𝑢, V) . (5)

In several bioapplications, a threshold as a lower bound
of similarity score may be defined by the biologists to filter
out the unwanted results. For example, in the homology
modeling application, the similarity score should be larger
than 35% between the template and target sequences. More-
over, in general, the sequence coverage ratio should be
larger than 60% between the template and target sequences.
Therefore, this threshold could be used as a factor to filter
out unnecessary alignments between a query and database
sequences. When we want to find the very similar sequences
in a database for a query sequence, the value of ED is set
to small. If a FD of a pair of query and database sequences
is larger than ED, it means that this database sequence may
be not similar to the query sequence. This database sequence
can be omitted in the following SW computations. It is worth
to note that a FD will be influenced by the sequence lengths
between query and database sequences. When the length of
a database sequence is longer than that of query sequence,
a FD of these two sequences may be large due to their
length difference. However, the possible subsequences in this
database sequence may be similar to the query sequence.
Hence, FDFS cannot be applied to the database sequencewith
a length longer than that of the query sequence in order to
avoid the possible false negatives.

2.4. Related Works. Recently, many works have been pro-
posed in the past to implement the SW algorithm on GPU.
In the following, the brief descriptions of selected works
have been made by considering the implementations and
performance.

In 2006, Liu et al. [14] proposed the hardware imple-
mentation of the double affine Smith-Waterman (DASW)
algorithm on a graphics card by using graphic API (OpenGL
+ GLSL). By only computing alignment scores, DASW
achieved 24M (millions or mega) DP cells per second on
single NVIDIA GeForce 7800 GTX GPU card. Liu et al. [15]

also presented an approach for the protein database scanning
by using a graphics card (OpenGL + GLSL) to gain a high
performance at the low cost.Theproposed approach achieved
more than 650M cell updates per second (abbreviated to
CUPS) on single NVIDIA GeForce 7800 GTX GPU card.
Moreover, it ran 9 times and 15 times faster than SSEARCH
[32] and OSEARCH [32], respectively. The above works
are both proposed based on GPU by OpenGL (a GPGPU
programming), not CUDA.

The SW-CUDA [16] precomputed a query profile stored
in the TM to replace the query sequence and the substitution
matrix. In SW-CUDA, each TD in a GD is used to do a
SW computation by using the query profile and a database
sequence. This process matched the definition of the ITE
technique proposed by the literature [19]. Hence, SW-CUDA
preordered the database sequences according to their lengths
in order to balance the computing workload of each TD in a
TB.The preordered database sequences are stored in the GM.
For each SW computation, the alignmentmatrix is computed
column by column and the similarity score is stored in the
LM. The SW-CUDA only calculated the similarity score for
a SW computation and achieved 1830 MCUPS (=1.8 giga-
CUPS) and 3480MCUPS (=3.48GCUPS) on single and dual-
NVIDIA GeForce 8800 GTX GPU cards, respectively, and it
ran 2 to 30 times faster than any previous implementation of
SW on GPU.

GSW algorithm [17] pointed out that the design of query
profile is not suitable forGPUdue to the limited size of TMon
GPU.They still used the query sequence and the substitution
matrix both stored in the CM to do the SW computations
by using the ITE technique. They also proposed an efficient
function with an ASCII code table to access the score in
the substitution matrix. The database sequences are stored
in the GM and the similarity scores are stored in the sM.
The GSW algorithm ran 10 times faster than SSEARCH on
single NVIDIA Tesla C870 GPU card; however, it is slower
than Farrar’s implementation [32]. Another SW algorithm
[18] by using the ITE technique achieved 7.5 and 14.5 GCUPS
on single and dual-NVIDIA GeForce 9800 GTX GPU cards,
respectively.

In CUDASW++1.0 [19], the ITE technique means that
each SW computation consisting of a pair of query and
database sequences (denoted as a task) is assigned to one
TD; the ITR technique means a task is assigned to one TB.
Due to the limited memory on GPU, each TD can only
process a pair of short sequences in a TB with many TDs
by using the ITE technique. Conversely, a pair of long
sequences can be processed by a TB with many TDs by
using the ITR technique. However, the ITE technique can
achieve better performance than the ITR technique due to
more tasks concurrently executed on GPU. The alignment
matrix is computed according to the diagonal direction in
CUDASW++1.0. For the ITE technique, they also considered
the effect of coalesced access in the GM. Therefore, a
preordered database is also used in CUDASW++1.0 as the
previous works above. However, these preordered database
sequences should be rearranged and then stored in the GM.
In CUDASW++1.0, a threshold is set to 3072 for the length
of database sequence. If the length of database sequence



International Journal of Genomics 5

is less than the threshold, the SW computation is done
by the ITE technique, otherwise by the ITR technique.
CUDASW++1.0 achieved an average performance of 9.5
GCUPS and 14.5 GCUPS on single NVIDIA GeForce GTX
280 GPU card and dual-NVIDIA GeForce GTX 295 GPU
card, respectively. However, the lengths of few sequences
in the test Swiss-Prot protein database (release 56.6) are
larger than the threshold [23]. CUDASW++2.0 [20] further
optimized the performance of CUDASW++1.0 based on the
SIMT abstraction of CUDA-enabled GPUs and achieved 17
GCUPS and 30 GCUPS on single NVIDIAGeForce GTX 280
GPU card and dual-NVIDIA GeForce GTX 295 GPU card,
respectively. CUDASW++3.0 [26] achieved the maximum
performance of 119.0 and 185.6 GCUPS on single NVIDIA
GeForce GTX 680 GPU card and dual-GPU GeForce GTX
690 GPU card, respectively.

The alignment matrix is computed according to the row
direction in CUDA-SSCA#1 [21]. The SSCA#1 benchmark
was used to evaluate 5 kernels that are various permutations
of the SW algorithm, including saving the alignment results
or not. In order to save the alignment result of a SW compu-
tation, CUDA-SSCA#1 needs to spend more memory space
by using a traceback procedure. The HKA algorithm [22]
processed the SW computations by using the ITE technique
and achieved 1.13 times better than CUDASW++2.0 in terms
of GCUPS. Hains et al. found that CUDASW++1.0 only
achieved 1.5 GCUPS when comparing the same query and
database sequences on single NVIDIA Tesla C1060 GPU card
by using the ITR technique. Their ITR kernel [23] obtained
better performance than that of CUDASW++1.0.

3. Methods

The implementation of CUDA-SWfr can be divided into two
parts: FDFS executed on CPU and the SW computations
executed on GPU. The flowchart of CUDA-SWfr is shown in
Figure 2. The details of these two parts are described in the
following sections, respectively.

3.1. FDFS Executed on CPU. In CUDA-SWfr, there is a
procedure to do FDFS on CPU. There are four steps in this
procedure: (1) construct the preorder database sequences
with FVs, (2) calculate the FV of query sequence, (3) calculate
the FDs for each pair of query and database sequences, and
(4) collect the query and selected database sequences and
then they are transferred fromCPU to GPU. In the following,
these four steps are described in detail, respectively.

Step 1 (construct the preorder database sequences with FVs).
In the previous works in Section 2.4, the database sequences
should be preordered according to their lengths due to the
ITE technique. It is unnecessary for CUDA-SWfr by using the
ITR technique. However, the following calculation of FD will
be influenced by the sequence lengths between the query and
database sequences asmentioned in Section 2.3.The database
sequences are sorted and then stored in a database with their
FVs in order to accelerate the computations of Step 3. The
computation time of this step is omitted in the experimental
test as the previous works in Section 2.4.

Step 2 (calculate the FV of query sequence). When the
biologists want to use CUDA-SWfr for a query sequence, the
FV of query sequence is calculated in the run-time by using
formula (3). Moreover, the length of query sequence is also
recorded in a variable. The FV and length of query sequence
will be used in Step 3.

Step 3 (calculate the FDs for each pair of query and database
sequences). As mentioned in Section 2.3, FDFS cannot be
applied to the database sequence with a length longer than
that of the query sequence in order to avoid the possible
false negative. Hence, when a database sequence has the
length longer than that of the query sequence, it needs to
be compared in the second part of CUDA-SWfr and it is
not necessary to calculate the FD with the query sequence.
When the length of query sequence is short, this way will
reduce a lot of time for Step 3. However, when a database
sequence has the length shorter than or equal to the query
sequences, the FD should be calculated by using formula (4)
with the query sequence. When the calculated FD is larger
than a threshold of ED, this database sequence is not selected
according to formula (5). The threshold is set by the user. For
the effect of FDFS, there are two factors. One is the length of
query sequence and the other is the threshold of ED. When
the length of query sequence is short, the lengths of most of
database sequences may be longer than it, and the number of
selected database sequences is large; in other words, the effect
of FDFS is small. Similarly, when the threshold of ED is set to
large, the FDs of most of database sequences may be smaller
than this threshold, and then the effect of FDFS is small; see
the experimental results in Section 4.

Step 4 (collect the query and selected database sequences
and then they are transferred from CPU to GPU). In this
step, the FVs of query and selected database sequences and
FDs of a pair of query and selected database sequences are
not needed to be transferred from CPU to GPU. By FDFS,
the transmission data (especially for the selected database
sequences) can be reduced, and then the transmission time
is decreased according to two factors mentioned above.
Therefore, there are two advantages by using FDFS. One is
to filter out the unnecessary alignments and the other is to
reduce the transmission time. Moreover, the time by Steps 3
and 4 can be overlapped with the time of SW computations
executed on GPU. After this step, the second part of CUDA-
SWfr is used to do the SW computations on GPU.

3.2. SW Computations Executed on GPU. After the first part
of CUDA-SWfr, the selected database sequences are stored in
the GM and the query sequence is stored in the CM. When
the length of query sequence is larger than the size of the CM,
it is stored in the GM. In the Fermi architecture, it may be fast
to access the query sequence in the GM due to the L2 caches.
In CUDA-SWfr, the SW computations are made by using the
ITR technique, and it means that the database sequences do
not need to be rearranged before being stored in the GM. For
the SW algorithm, a substitution matrix is needed. Hence, a
substitutionmatrix is also stored in theCM. In order to access
the score in a substitutionmatrix efficiently, the functionwith



6 International Journal of Genomics

Preordered database 

Step 1 

Step 2 

Filter out database 
sequences

False

Selected database sequences

Collect and transfer query sequence and selected database sequences from CPU to GPU

Step 3 

Step 4 

SW computations on GPUGPU

CPU

FDFS on CPU

Q

Q

False (Di)

True (Di)

FD ≤ ED

Dil ≤ Ql

(Di with FVs)

FV of Q

Di

Di

Di

Calculate FV of Q

Query sequence (Q)
Length of Di (Dil)

Length of Q (Ql)

Calculate FD for Q and Di

Calculate FVs of Di

FVs of Di

True (FV of Di)

Database sequences (Di)

Figure 2: The flowchart of CUDA-SWfr.

an ASCII code table presented by Striemer and Akoglu [17] is
also used in CUDA-SWfr.

By the ITR technique, all TDs in a TB are used to do a
SW computation; it is a dynamic programming algorithm.
According to the previous works and the SIMT scheme
on GPUs, there are eight implementation types of dynamic
programming by using the ITR technique on GPU [33].
These eight implementation types are synchronous row single
thread (SRST), synchronous row multiple threads (SRMT),
asynchronous row single thread (ARST), asynchronous
row multiple threads (ARMT), synchronous diagonal sin-
gle thread (SDST), synchronous diagonal multiple threads
(SDMT), asynchronous diagonal single thread (ADST), and
asynchronous diagonal multiple threads (ADMT). CUDA-
SWfr adopts the SRMT type of dynamic programming to
implement a SW computation by an assignment method, in
which one row is assigned to a TB until all rows are assigned.

For a SW computation in a TB, according to formulas (1)
and (2) and the dependency shown in Figure 1, this process
can be divided into two stages. In the first stage, the value of
each cell (𝐻(𝑖, 𝑗)) in a row is calculated according to the upper
cell, upper-left cell and 0. All cells in a row are calculated

by all of TDs in a TB. Assume that the length of a row is 𝑛
and the number of TDs in a TB is 𝑡; the values of (𝑛/𝑡) cells
are calculated by a TD, where 𝑛 is larger than 𝑡 in general.
However, these values are only intermediate values without
considering the left cell according to formula (1) and (2).
These values in a row are stored in the sM. In the second
stage, only a TD in a TB is used to correct the value of each
cell in a row by considering its left cell. These two stages will
be done repeatedly until all rows are assigned to this TB.
The highest value among all cells in all rows is the similarity
score for a query and a selected database sequence. For a
query sequence, all of similarity scores or the best score will
be copied from the sM to the GM, and then they could
be transferred from GPU to CPU according to the user’s
requirement. In CUDA-SWfr, the number of TDs in a TB is
set to 256 and the number of TBs in a GD is equal to the
number of selected database sequences (or partial of them in
order to overlap the computation time between FDFS and SW
computations).

The goal of this paper is to accelerate SW computations
for the protein database search by using FDFS based on
a CPU-GPU collaborative system. As the previous works



International Journal of Genomics 7

0
2
4
6
8

10
12
14

Co
m

pu
ta

tio
n 

tim
e (

s)

Sequence identity

GPU-query and database length: 256 GPU-query and database length: 512

GPU-query and database length: 768

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

0

20

40

60

80

100

120

Co
m

pu
ta

tio
n 

tim
e (

s)

Sequence identity
Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

0
5

10
15
20
25
30
35
40
45
50

Co
m

pu
ta

tio
n 

tim
e (

s)

Sequence identity

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

0
20
40
60
80

100
120
140
160
180
200

Co
m

pu
ta

tio
n 

tim
e (

s)

Sequence identity

GPU-query and database length: 1028

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

N
o 

fil
tr

at
io

n

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

N
o 

fil
tr

at
io

n

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

N
o 

fil
tr

at
io

n

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

N
o 

fil
tr

at
io

n

Figure 3: The overall computation time by CUDA-SWfr with various thresholds for 12 synthetic databases.

[16–19] in the past, the alignment quality is not the consid-
eration in this work. Only similarity scores are calculated
for each pair of query and database sequences by using the
SW algorithm. The query and selected database sequences
can be aligned again by using other alignment algorithms or
tools with specific substitutionmatrices in order to obtain the
good alignment results or other simulation results, such as the
homology modeling.

4. Experiment Results

In this work, CUDA-SWfr is implemented by C+CUDA on
single NVIDIA Tesla C2050 GPU card, with 448 SPs cores
and 3GB GDDR3 RAM.TheHost device is Intel Xeon E5506
CPU of 2.13 GHz with 12GB RAM running Ubuntu 10.04
operation system.

In order to evaluate the effect of FDFS in CUDA-SWfr,
the synthetic sequences are generated in this work. A test
query sequence with a length of 1028, NP 001116291, is a

human protein sequence downloaded from the NCBI web-
site (http://www.ncbi.nlm.nih.gov/). Three subsequences are
extracted randomly from it with the lengths of 256, 512, and
768, respectively. These three subsequences and the original
query sequence are used as the query sequences in the
following tests. Based on these query sequences, 12 synthetic
databases are generated and used in the experimental tests.
These 12 synthetic databases can be classified into 4 groups
according to the lengths: 256, 512, 768, and 1028. For each
group, there are three synthetic databases with 10000, 20000,
and 40000 database sequences. For each database sequence
in a group, it is generated according to the corresponding
query sequence with the same length. For each synthetic
database, it has database sequences with 0%∼100%mutations
of its corresponding query sequence. For example, assume
that a synthetic database has 40000 database sequences
and the length is 1028. There are 4000 database sequences
with 0%∼10% mutations of query sequence, 4000 database
sequences with 10%∼20% mutations of query sequence, and



8 International Journal of Genomics

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Ra

tio
 o

f n
um

be
r o

f s
eq

ue
nc

es

Sequence identity

Number of database sequences: 10000

Query and database Length: 1028
Query and database Length: 768
Query and database Length: 512
Query and database Length: 256

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ra
tio

 o
f n

um
be

r o
f s

eq
ue

nc
es

Sequence identity

Number of database sequences: 20000

Query and database Length: 1028
Query and database Length: 768
Query and database Length: 512
Query and database Length: 256

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ra
tio

 o
f n

um
be

r o
f s

eq
ue

nc
es

Sequence identity

Number of database sequences: 40000

Query and database Length: 1028
Query and database Length: 768
Query and database Length: 512
Query and database Length: 256

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

Th
re

sh
ol

d 
90

%

Th
re

sh
ol

d 
80

%

Th
re

sh
ol

d 
70

%

Th
re

sh
ol

d 
60

%

Th
re

sh
ol

d 
50

%

Th
re

sh
ol

d 
40

%

Th
re

sh
ol

d 
30

%

Th
re

sh
ol

d 
20

%

Figure 4: Ratio (%, number of selected database sequences/number of original database sequences) for 12 synthetic databases with various
thresholds.

so on. When we want to generate one database sequence
with 0%∼10% mutations of query sequence, a number 𝑡 is
randomly selected between 0 (1028 × 0%) and 102 (1028 ×
10%). If 𝑡 is 57, itmeans that 57 positions in the query sequence
are randomly selected at first, and then the residues in these
57 positions are changed to others by adding a constant
(also randomly selected) with its original ASCII code. This
work is done repeatedly until 40000 database sequences are
generated for this synthetic database. In the following tests,
the threshold of FDFS is the sequence identity. In otherwords,
if a threshold is set to 90%, it means that the selected database
sequence may be very similar to the query sequence.

Figure 3 shows the overall computation time (unit: sec-
ond) by CUDA-SWfr with various thresholds for 12 synthetic
databases. The threshold “None” means the SW compu-
tations by CUDA-SWfr without FDFS. From Figure 3, the
computation time decreases when the threshold increases for
12 synthetic databases. When the threshold is set to 90%,
the computation time by CUDA-SWfr is fastest for all of 12
synthetic databases. From Figure 3, it also shows that the
computation time increases when the sequence length or the
number of database sequences increases.

In order to observe the relationship between the threshold
and the number of selected database sequences, Figure 4



International Journal of Genomics 9

0

10

20

30

40

50

60

70

90% 80% 70% 60% 50% 40% 30% 20% None

Sp
ee

du
p

Sequence identity

Length: 256

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

0
10
20
30
40
50
60
70
80
90

100

90% 80% 70% 60% 50% 40% 30% 20% None

Sp
ee

du
p

Sequence identity

Length: 768

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

0
10
20
30
40
50
60
70
80
90

90% 80% 70% 60% 50% 40% 30% 20% None

Sp
ee

du
p

Sequence identity

Length: 512

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

0
10
20
30
40
50
60
70
80
90

90% 80% 70% 60% 50% 40% 30% 20% None

Sp
ee

du
p

Sequence identity

Length: 1028

Number of database sequences: 10000
Number of database sequences: 20000
Number of database sequences: 40000

Figure 5: The overall speedup by comparing CUDA-SWfr with the CPU-based SW method under various thresholds for 12 synthetic
databases.

shows the ratio (%) by dividing the number of selected
database sequences by the number of original database
sequences for 12 synthetic databases with various thresh-
olds. From Figure 4, the ratio decreases when the threshold
increases for 12 synthetic databases. When the threshold is
90%, in Figure 4, only 10% database sequences are selected
for the SW computations on GPU for 12 synthetic databases.
These results explain why the computation time by CUDA-
SWfr is fastest when the threshold is set to 90%. From
Figure 4, it also shows that the ratio is not influenced by
the number of database sequences for 12 synthetic databases.
Besides, when the length of query sequence is equal to that
of database sequences, the ratio is also not influenced by the
sequence length for 12 synthetic databases. However, the ratio
will be influenced by the sequence length when the length of
query sequence is not equal to that of database sequences.
As mentioned in Section 2.3, when the length of database
sequence is larger than that of query sequence, this database
sequence should be compared with the query sequence.
Hence, when database sequences have various lengths, for a

query sequence, the ratio will increase when the number of
database sequences, each having a length larger than that of
query sequence, increases.

Figure 5 shows the overall speedups by comparing
CUDA-SWfr with the CPU-based SWmethod under various
thresholds for 12 synthetic databases. From Figure 5, the
overall speedups by CUDA-SWfr without FDFS are about
8.5∼9.6 times. The best speedup by CUDA-SWfr with FDFS
achieved 96 times. From Figure 5, the speedup increases
when the threshold increases for 12 synthetic databases.
From Figure 5, it also shows that the speedup is not influ-
enced by the number of database sequences for 12 synthetic
databases. Besides, when the length of query sequence is
equal to that of database sequences, the speedup is also not
influenced by the sequence length for 12 synthetic databases.
The observations in Figure 5 match those of Figures 3
and 4. Unlike the previous works that use the GCUPS
to evaluate the performance, CUDA-SWfr only considered
the computation time and the speedups. There are two
reasons. First, the overall computation workload (DP cells)



10 International Journal of Genomics

8.8

9

9.2

9.4

9.6

9.8

10

10.2

25
6 

ve
rs

us
 5

12

25
6 

ve
rs

us
 7

68

25
6 

ve
rs

us
 1

02
8

51
2 

ve
rs

us
 7

68

51
2 

ve
rs

us
 1

02
8

76
8 

ve
rs

us
 1

02
8

Query versus database

Mix comparisons

Number of database sequences: 10000
Number of database sequences: 20000
Number database sequences: 40000

Sp
ee

du
p

Figure 6: The overall speedup by comparing CUDA-SWfr with the
CPU-based SWmethod for various combinations.

by CUDA-SWfr is difficult to be estimated due to filtering
out the unnecessary alignments by FDFS. Second, the overall
computation time by CUDA-SWfr consisted of FV and FD
calculations (Steps 2 and 3 in Section 3.1), SW computations
(Section 3.2), and transmission time (Step 4 in Section 3.1
and Section 3.2). Hence, it is hard to estimate the correct
value of GCUPS. Assume that the overall computation time
is spent to calculate overall cells. CUDA-SWfr achieved
the peak performance of 2.133 GCUPS by using the ITR
technique.

When the length of query sequence is less than the length
of database sequences, Figure 6 shows the overall speedup
by comparing CUDA-SWfr with the CPU-based SWmethod
for various combinations. The query sequence of length 256
was used to compare with the synthetic database of lengths
512, 768, and 1028, respectively; the query sequence of length
512 was used to compare with the synthetic database of
lengths 768 and 1028, respectively; the query sequence of
length 768 was used to compare with the synthetic database
of length 1028. The overall speedups by CUDA-SWfr in
Figure 6 are about 9.3∼10 times. Since the length of database
sequence is larger than that of query sequence, all of database
sequences should be compared with the query sequence.
These results are similar to those (8.5∼9.6 times) by CUDA-
SWfr without FDFS as shown in Figure 3. From Figure 6,
the speedup increases when the length of database sequences
increases. The reason is that the overall computation work-
load increases when the length of database sequences
increases.

In this work, we did not use the real biological sequences
to evaluate the effect of FDFS. There are two reasons.
The first one is the lengths of real biological sequences
are various. In order to avoid the possible false negative,
FDFS cannot be applied to the database sequence with a
length longer than that of the query sequence. Hence, it is

hard to choose the suitable set of real biological sequences
and then to prove the relationships of ratio-threshold and
ratio-speedup on GPU. The second one is the range of
similarity scores among real biological sequences is large. In
practice, it shows that FDFS scheme is necessary to filter out
the unnecessary alignments. However, in the experimental
tests, it is hard to choose the suitable set of real biological
sequences to prove the relationships of threshold-speedup on
GPU.

5. Conclusions

In this paper, we presented a GPU-based SW alignment
method, CUDA-SWfr, with FDFS by using the ITR technique.
The FDFS is executed by the CPU capability to filter out the
unnecessary alignments and the SW computations are made
by the GPU capability. From the experimental tests, CUDA-
SWfr ran 9.6 times faster than the CPU-based SW method
without FDFS; it ran 96 times faster than the CPU-based SW
method with FDFS. The effect by FDFS is influenced greatly
by the threshold.When the threshold as the sequence identity
is large, the number of selected database sequences is small
whichmeans that the effect by FDFS is visible. In other words,
the effect by FDFS can be omitted with a small threshold.
Besides, the effect by FDFS also could be influenced by the
number of database sequences; each has a length larger than
that of query sequence. CUDA-SWfr is suitable for the protein
database search with a lot of database sequences, and the
proposed FDFS can be integrated into other research works,
such as Huang et al. [34] and Feng et al. [35], in recent
years.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Part of this work was supported by the Ministry of Sci-
ence and Technology under Grants MOST104-2221-E-182-
050, MOST 104-2221-E-182-051, MOST103-2221-E-126-013,
and MOST103-2632-E-126-001-MY3. This work was also
supported in part by theNationalNatural Science Foundation
of China under Grant 61373102 and Yunan Academician
Funding. The authors would like to thank the anony-
mous reviewers and experts who discussed this work with
them.

References

[1] S. B. Needleman and C. D. Wunsch, “A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp.
443–453, 1970.

[2] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195–197, 1981.



International Journal of Genomics 11

[3] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal ofMolecular Biology, vol. 162, no. 3, pp. 705–
708, 1982.

[4] D. S. Hirschberg, “A linear space algorithm for computing
maximal common subsequences,”Communication ofThe ACM,
vol. 18, pp. 341–343, 1975.

[5] W. R. Pearson and D. J. Lipman, “Improved tools for biological
sequence comparison,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 85, no. 8, pp. 2444–
2448, 1988.

[6] S. F. Altschul,W. Gish,W.Miller, E.W.Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[7] S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped
BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Research, vol. 25, no. 17, pp.
3389–3402, 1997.

[8] T. Oliver, B. Schmidt, D. Nathan, R. Clemens, andD. L.Maskell,
“Using reconfigurable hardware to accelerate multiple sequence
alignment with ClustalW,” Bioinformatics, vol. 21, no. 16, pp.
3431–3432, 2005.

[9] T. F. Oliver, B. Schmidt, and D. L. Maskell, “Reconfigurable
architectures for bio-sequence database scanning on FPGAs,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
52, no. 12, pp. 851–855, 2005.

[10] I. T. S. Li, W. Shum, and K. Truong, “160-fold acceleration of
the Smith-Waterman algorithmusing a field programmable gate
array (FPGA),” BMC Bioinformatics, vol. 8, article 185, 2007.

[11] A. Szalkowski, C. Ledergerber, P. Krähenbühl, andC.Dessimoz,
“SWPS3—fast multi-threaded vectorized Smith-Waterman for
IBMCell/B.E. and x86/SSE2,”BMCResearchNotes, vol. 1, article
107, 2008.

[12] M. S. Farrar, “Optimizing Smith-Waterman for the Cell Broad-
band Engine,” http://cudasw.sourceforge.net/sw-cellbe.pdf.

[13] A. Wirawan, C. K. Kwoh, N. T. Hieu, and B. Schmidt, “CBESW:
sequence alignment on the playstation 3,” BMC Bioinformatics,
vol. 9, article 377, 2008.

[14] Y. Liu, W. Huang, J. Johnson, and S. H. Vaidya, “GPU acceler-
ated Smith-Waterman,” in Computational Science—ICCS 2006,
vol. 3994 of Lecture Notes in Computer Science, pp. 188–195,
Springer, Berlin, Germany, 2006.

[15] W. Liu, B. Schmidt, G. Voss, A. Schroder, andW.Muller-Wittig,
“Bio-sequence database scanning on a GPU,” in Proceedings
of the 20th International Parallel and Distributed Processing
Symposium (IPDPS ’06), IEEE, April 2006.

[16] S. A. Manavski and G. Valle, “CUDA compatible GPU cards
as efficient hardware accelerators for smith-waterman sequence
alignment,” BMC Bioinformatics, vol. 9, supplement 2, article
S10, 2008.

[17] G. M. Striemer and A. Akoglu, “Sequence alignment with
GPU: performance and design challenges,” in Proceedings of
the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’09), 10, p. 1, May 2009.

[18] L. Ligowski and W. Rudnicki, “An efficient implementation of
SmithWaterman algorithmonGPUusingCUDA, formassively
parallel scanning of sequence databases,” in Proceedings of
the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’09), pp. 1–8, Rome, Italy, May 2009.

[19] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: optimiz-
ing Smith-Waterman sequence database searches for CUDA-
enabled graphics processing units,” BMC Research Notes, vol. 2,
article 73, 2009.

[20] Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++2.0:
enhanced Smith-Waterman protein database search on CUDA-
enabled GPUs based on SIMT and virtualized SIMD abstrac-
tions,” BMC Research Notes, vol. 3, no. 1, article 93, 2010.

[21] A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the
Smith-Waterman algorithm using single and multiple graphics
processors,” Journal of Computational Physics, vol. 229, no. 11,
pp. 4247–4258, 2010.

[22] L. Hasan, M. Kentie, and Z. Al-Ars, “GPU-accelerated protein
sequence alignment,” in Proceedings of the 33rd Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS ’11), pp. 2442–2446, September 2011.

[23] D. Hains, Z. Cashero, M. Ottenberg, W. Bohm, and S. Rajopad-
hye, “Improving CUDASW++, a parallelization of smith-
waterman for CUDA enabled devices,” in Proceedings of the
25th IEEE International Parallel and Distributed Processing
Symposium, Workshops and Phd Forum (IPDPSW ’11), pp. 490–
501, May 2011.

[24] E. F. O. Sandes andA. C.M. A. deMelo, “CUDAlign: usingGPU
to accelerate the comparison of megabase genomic sequences,”
in Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 137–146,
January 2010.

[25] E. F. D. O. Sandes and A. C. M. A. de Melo, “Smith-Waterman
alignment of huge sequences with GPU in linear space,” in
Proceedings of the 25th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS ’11), pp. 1199–1211, IEEE,
Anchorage, Alaska, USA, May 2011.

[26] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accel-
erating Smith-Waterman protein database search by coupling
CPU and GPU SIMD instructions,” BMC Bioinformatics, vol.
14, article 117, 2013.

[27] S.-T. Lee, C.-Y. Lin, and C. L. Hung, “GPU-based cloud
service for smith-waterman algorithmusing frequency distance
filtration scheme,” BioMed Research International, vol. 2013,
Article ID 721738, 8 pages, 2013.

[28] S. Henikoff and J. G. Henikoff, “Amino acid substitution matri-
ces from protein blocks,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 89, no. 22, pp.
10915–10919, 1992.

[29] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, “A model of
evolutionary change in proteins,” in Atlas of Protein Sequence
and Structure, M. O. Dayhoff, Ed., National Biomedical
Research Foundation, 1978.

[30] T. Kahveci, V. Ljosa, and A. K. Singh, “Speeding up whole-
genome alignment by indexing frequency vectors,”Bioinformat-
ics, vol. 20, no. 13, pp. 2122–2134, 2004.

[31] T. Kahveci and A. K. Singh, “An efficient index structure for
string databases,” in Proceedings of the 27th VLDB Conference,
pp. 351–360, Morgan Kaufmann, Roma, Italy, 2011.

[32] W. R. Pearson, “Searching protein sequence libraries: compari-
son of the sensitivity and selectivity of the Smith-Waterman and
FASTA algorithms,” Genomics, vol. 11, no. 3, pp. 635–650, 1991.

[33] Y.-S. Lin, C.-Y. Lin, H.-C. Chi, and Y.-C. Chung, “Multiple
sequence alignments with regular expression constraints on a
cloud service system,” International Journal of Grid and High
Performance Computing, vol. 5, no. 3, pp. 55–64, 2013.



12 International Journal of Genomics

[34] L. Huang, C. Wu, L. Lai, and Y. Li, “Improving the mapping of
Smith-Waterman sequence database searches onto CUDA-
enabled GPUs,” BioMed Research International, vol. 2015, Arti-
cle ID 185179, 10 pages, 2015.

[35] X. Feng, H. Jin, R. Zheng, L. Zhu, and W. Dai, “Accelerating
Smith-Waterman alignment of species-based protein sequences
on GPU,” International Journal of Parallel Programming, vol. 43,
no. 3, pp. 359–380, 2015.


